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Confined semiflexible polymer chains
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Motivated by recent experiments on actin filaments, the behavior of semiflexible polymers con-
fined between two rigid walls is investigated as a function of the wall distance. For fixed bending
stiffness the persistence length depends on the wall distance and shows an interesting crossover.

PACS number(s): 61.41.+e, 87.10.+€, 36.20.—r

Actin filaments are important constituents of biologi-
cal organisms and they are rather stiff. In some respects
they behave as semiflexible polymers, with a persistence
length of the order of the chain length. Recently, freely
flickering actin filaments have been investigated in two
independent experiments [1,2], where the actin filaments
were confined between two walls. In both experiments
different wall distances and different methods for the de-
termination of the persistence length were used and dif-
ferent values for the persistence length and the bending
stiffness were measured.

Here, we consider a semiflexible polymer confined be-
tween two rigid walls and we investigate its static and
dynamic properties as a function of the wall distance.
Special emphasis is placed on the cases where the wall
distance is of the order of the persistence length and
the chain length. Keeping all chain properties fixed and
changing the wall distance, a crossover of the persistence
length from its value in three dimensions to its value in
two dimensions will be found. This crossover might be
one of the possible reasons for the different experimental
results.

Single semiflexible polymer chains of length IN are
considered and the chain configuration is described by
a vector function c,, with the contour variable s varying
continuously between 0 and V. We describe the semiflex-
ible polymer chain by a generalized Rouse model which
provides in its continuum formulation the following equa-
tion of motion for ¢, [3]:

CDés = -

5
s Hie) + 1. (1)

Herein the thermal noise f, is related via the fluctuation
dissipation theorem

(£ (t) ® £ur (') = 2kpTCol8(s — s')8(t — t') (2)

to the friction constant for each chain segment (y, where
® is the dyadic product and 1 the unit matrix. The
Hamiltonian of our semiflexible chain up to the second
nonvanishing order is described by [3]
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N [3keT (0e,\" 7 (0%,
H{C}ZA ds[ P (33) +5(asz> +]
(3)

kp is the Boltzmann constant, 7' the absolute tempera-
ture, and R describes the bending rigidity of the chain.
Note, if & vanishes, then Eq. (3) reduces to the Hamilto-
nian for a Gaussian chain and the length element  may
be interpreted as the Kuhn length. For finite values of
R, the persistence length of the chain orientation, /,, and
therefore the Kuhn length, is larger than I. A length
constraint for the polymer chains provides a relation be-
tween [ and &. In this case the Hamiltonian given in Eq.
(3) contains only one independent parameter [3,4].

For reasons described in Ref. [5], we actually simulate
the chain including the inertial term m¢, instead of the
purely dissipative equation of motion, Eq. (1). The in-
troduction of the inertial term is necessary to avoid a
remarkable accumulation of the numerical error in the
integration scheme. Additionally, we adopt a discrete
description of the chain, where the chain is described by
a one-dimensional string of beads connected by springs.
The spring connecting neighboring monomers is assumed
to have the following potential [6]:

Hyona = Hyjy + Hpgne.- (4)

The first part is a purely repulsive Lennard-Jones poten-
tial,

12 6
Hyy = 4 [(TUJ) - (Taj) * %] 5 2200,

0, Tij > 21/60',

—
ut
~

and the second part is a nonlinear FENE (finite extend-
able nonlinear elastic) potential

lErR21 T :
—— — $ ..
Hpgng = 2 o [1 (RO) :I » i < Ro, (6)

00, Tij > Ry.
In order to introduce the bending rigidity of the chain,

i.e., the second term on the right-hand side of Eq. (3),
we assume the additional potential
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V(0;) = —2k1In[3(1 + cos ©;)]. (7

O, is the angle between the two neighboring bond vectors
b; and b;;; meeting at the ith monomer, whereby the
bond vector b; is defined by

Ci —Ci-1

b, = (8)

le; — ci-| ’
c; being the position vector of the ith monomer and x the
bending rigidity modulus. Here it should be mentioned
that there is no restoring force for the bond rotation at
a finite angle ¢ along the azimuthal direction. Due to
this bending elasticity, the statistics of the chain is not
Gaussian on length scales below the persistence length.
However, the large scale statistics still retains the Gaus-
sian nature.

With those potentials and the inertial term we finally
simulate the spatially discretized equations:

me; = —Zf — o€ + f£i(t), (9)
(£:(t) ® £ (¢")) = 2CokpT1 8(t — t') 6;5. (10)

Details are described in Ref. [5].

Here, we should note that such a bond-bead model
defined by the potentials given in Eq. (4) and in Eq. (7)
reproduces our original Hamiltonian given in Eq. (3), if
we take a continuum limit of the chain with a sufficiently
strong spring and a bending modulus which guarantees
a smooth contour of the chain.

The walls are located at 2 = 0 and z = d and both are
parallel to the z-y plane. They are assumed to be hard
walls, where the monomers are elastically scattered when
they meet the boundaries. On the simulation procedures,
we follow the techniques described in Refs. [5] and [6].
The parameters of the model equation are optimized for
our purposes, where we follow Ref. [6] for the bond po-
tential and choose the parameters in the Lennard-Jones
potential as o = 1.0 and € = 1.0. For the mass we choose
m = 1.0 which leads to the typical time scale related to
the Lennard-Jones potential 7 = o(m/e)}/? = 1.0. The
parameters of the attractive potential Hrgng are chosen
as k = 30.0e/0% and Ry = 1.50. For those parameters
the minimum of the bond potential lies at b = 0.9610.
For the temperature kT = 1.0¢ is chosen and with the
friction constant (o = 0.5(7m)~! a reasonable coupling
to the heat bath is obtained via the fluctuation dissi-
pation relation and therefore no temperature drifts take
place during the simulation.

Important static properties of a semiflexible polymer
are its persistence length I, and the correlation of the
bond orientations (b; - b;). The latter decays exponen-
tially for the above described Hamiltonian as (b; - b;) =
exp(-—li — j|l/lp).
(b; - b;) of the polymer chain is calculated in the pres-
ence of the two walls, we find by our simulations the
following three typical behaviors as shown in Fig. 1 for
a chain of length 49/, a bending elasticity x = 50¢, and
a wall distance d = 8I. The bond correlation (b; - b;)

When the bond correlation function
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FIG. 1. The angle correlation In(({b; - bj)) of a semiflexible
polymer between two walls in three-dimensions (lower curve)
and for the chain projected onto the plane of the walls (upper
curve). In the angle correlation in three-dimensions there is
a crossover around |i — j|I ~ d from the three dimensional
behavior into the slope of that of the two-dimensional projec-
tion.

(lower curve in Fig. 1) decays exponentially and faster
at short distances (|i — j|I < d) than at larger distances
(i — 4|7 > d). The crossover in the decay of (b; - b;) and
therefore for the corresponding persistence length hap-
pens around |i — j|I o« d. The upper curve in Fig. 1
corresponds to the bond correlation calculated from the
projection of the chain onto the z-y plane. The decay
length of the orientation correlation of the chain at larger
distances (|i — j|I > d) is similar to that of the projection
onto the z-y plane. There is obviously a transition of the
semiflexible polymer chain from the three-dimensional to
its two-dimensional behavior, depending on the wall dis-
tance. This phenomenon holds also for other distances d
and other values for the bending stiffness.

In Fig. 2 the three persistence lengths, all determined
from the exponential decay of the bond correlation are
plotted (a) from the initial decay at short length scales
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FIG. 2. The persistence length I, determined from the
three different exponential decay regimes of the bond corre-
lation of a semiflexible polymer between two rigid walls (see
Fig. 1): (%) lp, determined from initial slope of the bond cor-
relation, (o) I, from the slope at large length scales, and (O)I,
from the decay of the bond correlation of the chain projected
into the plane of the walls.
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(%), (b) from the decay at larger length scales (o), and
(c) from the decay along the projection of the chain into
the z-y plane (O). The persistence lengths determined
from the projection and those at larger length scales agree
fairly well. That means that a confined chain behaves like
a two-dimensional chain at length scales larger than the
wall distance d. The ratio between the persistence length
for the projected conformation and that at short length
scales varies roughly between 1.6 and 2, depending on
the wall distance d.

On the other hand, the persistence lengths in two and
J
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three spatial dimensions can be calculated semianalyti-
cally for discrete chains of fixed bond length, as explained
in the following. For the bending potential given in Eq.
(7) one can calculate via

fdQ cos © e~V (®)/ksT
a0 e Vi©)/kaT (11)

(cos ®) =

the angle distribution in two (n = 2) and three (n = 3)
spatial dimensions, with dQ = d© and d) = 27 sin ©d0O,
respectively:

T BT "' 1 T
(cos ©) =/(; sin" 2@ cos© [% (1 + cos G))] ) //0 sin” 2 @ [5 (1 + cos @)] ° de. (12)
[

© describes the angle between neighboring bonds:
(b1 . bi+1> = <COS @,) (13)

In three dimensions one can perform the above integrals
explicitly and one has

K

k+k BT’
whereas in two dimensions we have calculated the inte-
grals numerically. For small values of [/, one can deter-

mine the persistence length [, by expanding (b; -b;11) =
exp(—1/lp):

(cos ©) = (14)

l
b= 1—{(cos®) "’ (15)
This provides also the analytical relation between the
persistence length [, and the bending elasticity « in three
dimensions, I, = I(1 + x/kpT). In two dimensions the
analytical relation between I, and x is more complex.
The persistence length I,(x) as a function of «, deter-
mined from the simulations via the orientational corre-
lation shown in Fig. 1, is in good agreement with the
analytical relations given above (described in more de-
tail in Ref. [5]). The persistence lengths I, and I,3, in
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FIG. 3. The ratio of the persistence length l,2 in two di-
mensions and in three dimensions I3 calculated from Eq. (12)
as a function of the normalized bending elasticity 4x/kpT.

two and three spatial dimensions, respectively, can be
calculated via Eq. (15), whereas (cos ©) from Eq. (12)
must be numerically evaluated for n = 2. The ratio be-
tween the two persistence lengths l,; and [,3 is plotted
in Fig. 3 as a function of the bending stiffness . The
ratio starts at the value 1 and increases to its limiting
value 2, where the persistence lengths in two and three
dimensions both diverge. The different values for /2 and
lp3 at the same value of the bending stiffness have their
origin in the constraint of fixed chain length. Without
that constraint the persistence lengths are the same in
two and three spatial dimensions [5]. In our numerical
simulation the chain length is not rigidly fixed; therefore
the ratios for l,3/lp2 in Fig. 2 are smaller than 2 and
vary between 1.6 and 2.0.

Another static quantity for a polymer chain, the mean-
squared end-to-end distance (R2?) = {((c; — cn)?) in-
creases with decreasing wall distance d from the three-
dimensional bulk value to its two-dimensional one. In
the absence of the walls, the persistence length calcu-
lated from numerical results for the end-to-end distance
via the analytical relation [3,7]

(R?) = 2112,(1£ -1+ e_L/lP) (16)
P

is in good agreement with the value for the persistence
length determined from the bond correlation. However,
for polymers confined between two rigid walls [5] [with
L =[(N —1)], the two approaches usually give different
values, especially in the range L > d > I,. This has to be
taken into account when persistence lengths determined
by different methods are compared.

A further possible way for characterizing the static
properties of a polymer is the decomposition of the poly-
mer contour into normal modes, the so-called Rouse
modes,

1 & pr(i — 1)
Xp = N— ; Cz(t) Ccos [—ﬁ:l, (17)
wherep = 0,1,..., N—1. Similarly to the static structure

factor, the Rouse modes also provide information about
the internal structure of the polymer. Starting with the
potential in the continuum limit in Eq.(3), it is easy to
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calculate

3kgT
X2\ = ~
< P> [8kpT/12]q? + Rq*’

(18)

with ¢ = np/N. This reduces in the case of an ideal
random walk, & = 0, to the well known scaling relation

<X12>> o 1/p?. In the experiment described in Ref. [1],

the slope of the actin contour was measured and decom-
posed in its Fourier modes and from the measured data
a quantity proportional to (q‘;'(Xf,))_1 = 5,;7 %’;—f;,z + K]
has been extracted, which becomes for large values of
g ( p ~ N) proportional to the constant K. This
expression for (X2) obviously shows a crossover near
g% = 3kpTx/I?, at length scales of the order of the persis-
tence length, where a transition occurs from the rigid rod
regime at short lengths to the Gaussian chain regime for
flexible polymers at larger length scales. The experimen-
tal measurements on actin in Ref. [1] detect a crossover
too, which finds its natural interpretation in the above-
mentioned mode spectrum calculation of the semiflexible
polymer chains.

In Ref. [2] an exponential decay of the bond corre-
lation was measured, which the authors insisted to be
incompatible with a wave number dependent apparent
bending stiffness as measured in Ref. [1]. However, a
wave number dependent behavior of (p*(X2))~!, is not
in contradiction with exponential decay for the orienta-
tional correlation along the chain (see also [4,5]). As
the persistence length observed in Ref. [2] is rather large
(Ip > 0.5L), it might be difficult to detect a crossover in
the quantity (p*(X2))~! in this experiment, contrary to
the case in Ref. [1].

There are at least three possible reasons why a smaller
value for the persistence was reported in Ref. [1] than
in Ref. [2]. (1) The confinement of the actin to two
dimensions, as in Ref. [2], might lead to a larger per-
sistence length as explained in this note. (2) A further
possible origin for the different persistence lengths is the
defects in the actin filament described in Ref. [1]. Such
defects lead to larger mode amplitudes | X, | and therefore
to an apparently lower bending modulus as well as to a

smaller persistence length. (3) Also, different experimen-
tal methods might be a possible reason for the different
values of the persistence length /,. Ott et al. determined
the persistence length /, from the decay of the orienta-
tional correlation of the measured contour. The decay
length of the orientational correlation is a rather natural
definition of the persistence length [,. Kas et al. deter-
mined [, indirectly by measuring first the spectrum X,
and calculating from that spectrum the bending elasticity
K. Finally, they calculated [, from the bending elasticity
K via a simple formula.

We did some consistency tests for our simulations.
In one case, for various input values of x the persis-
tence lengths /,(x) have been determined from the ori-
entational correlation in the simulations and from those
values of I,(k) we calculated k via the expression k =
kgT(l,/l — 1), and compared it with the input value for
k. There is good aggrement between the k values deter-
mined in this way from the simulations and the input val-
ues. A similar consistency test for the radius of gyration
was also satisfying (for details, we refer to Ref. [5]). From
that point of view the determination of [, from the orien-
tational correlation was rather robust. [k determined by
fitting the ansatz given in Eq. (18) to the mode spectrum
obained from the simulations is in less good agreement
with the input value of k; the actual value of x is un-
derestimated.] In that respect it would be desirable for
the persistence length /, to be determined from both sets
of experimental data from the orientational correlation.
That would allow one to sort out whether the different
values for [, found in the experiments described in Refs.
[1,2] have their origin in the different determination pro-
cedure or whether the difference is characteristic for the
materials used.
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